PyTorch Geometric Signed Directed Models¶
Contents
Directed Undirected Network Models and Layers¶
- class MagNet_node_classification(num_features: int, hidden: int = 2, q: float = 0.25, K: int = 2, label_dim: int = 2, activation: bool = False, trainable_q: bool = False, layer: int = 2, dropout: float = False, normalization: str = 'sym', cached: bool = False)[source]¶
The MagNet model for node classification from the MagNet: A Neural Network for Directed Graphs. paper.
- Parameters
num_features (int) – Size of each input sample.
hidden (int, optional) – Number of hidden channels. Default: 2.
K (int, optional) – Order of the Chebyshev polynomial plus 1, i.e., Chebyshev filter size \(K\). Default: 2.
q (float, optional) – Initial value of the phase parameter, 0 <= q <= 0.25. Default: 0.25.
label_dim (int, optional) – Number of output classes. Default: 2.
activation (bool, optional) – whether to use activation function or not. (default:
False
)trainable_q (bool, optional) – whether to set q to be trainable or not. (default:
False
)layer (int, optional) – Number of MagNetConv layers. Deafult: 2.
normalization (str, optional) – The normalization scheme for the magnetic Laplacian (default:
sym
): 1.None
: No normalization \(\mathbf{L} = \mathbf{D} - \mathbf{A} \odot \exp(i \Theta^{(q)})\) 2."sym"
: Symmetric normalization \(\mathbf{L} = \mathbf{I} - \mathbf{D}^{-1/2} \mathbf{A} \mathbf{D}^{-1/2} \odot \exp(i \Theta^{(q)})\) odot denotes the element-wise multiplication.cached (bool, optional) – If set to
True
, the layer will cache the __norm__ matrix on first execution, and will use the cached version for further executions. This parameter should only be set toTrue
in transductive learning scenarios. (default:False
)
- forward(real: torch.FloatTensor, imag: torch.FloatTensor, edge_index: torch.LongTensor, edge_weight: Optional[torch.LongTensor] = None) → torch.FloatTensor[source]¶
Making a forward pass of the MagNet node classification model.
- Arg types:
real, imag (PyTorch Float Tensor) - Node features.
edge_index (PyTorch Long Tensor) - Edge indices.
edge_weight (PyTorch Float Tensor, optional) - Edge weights corresponding to edge indices.
- Return types:
log_prob (PyTorch Float Tensor) - Logarithmic class probabilities for all nodes, with shape (num_nodes, num_classes).
- class DiGCN_node_classification(num_features: int, hidden: int, label_dim: int, dropout: float = 0.5)[source]¶
An implementation of the DiGCN model without inception blocks for node classification from the Digraph Inception Convolutional Networks paper.
- Parameters
- forward(x: torch.FloatTensor, edge_index: torch.LongTensor, edge_weight: Optional[torch.FloatTensor] = None) → torch.FloatTensor[source]¶
Making a forward pass of the DiGCN node classification model without inception blocks.
- Arg types:
x (PyTorch FloatTensor) - Node features.
edge_index (PyTorch LongTensor) - Edge indices.
edge_weight (PyTorch FloatTensor, optional) - Edge weights corresponding to edge indices.
- Return types:
x (PyTorch FloatTensor) - Logarithmic class probabilities for all nodes, with shape (num_nodes, num_classes).
- class DiGCN_Inception_Block_node_classification(num_features: int, hidden: int, label_dim: int, dropout: float = 0.5)[source]¶
An implementation of the DiGCN model with inception blocks for node classification from the Digraph Inception Convolutional Networks paper.
- Parameters
- forward(features: torch.FloatTensor, edge_index_tuple: Tuple[torch.LongTensor, torch.LongTensor], edge_weight_tuple: Tuple[torch.FloatTensor, torch.FloatTensor]) → torch.FloatTensor[source]¶
Making a forward pass of the DiGCN node classification model.
- Arg types:
x (PyTorch FloatTensor) - Node features.
edge_index_tuple (PyTorch LongTensor) - Tuple of edge indices.
edge_weight_tuple (PyTorch FloatTensor, optional) - Tuple of edge weights corresponding to edge indices.
- Return types:
x (PyTorch FloatTensor) - Logarithmic class probabilities for all nodes, with shape (num_nodes, num_classes).
- class DIGRAC_node_clustering(num_features: int, hidden: int, nclass: int, fill_value: float, dropout: float, hop: int)[source]¶
The directed graph clustering model from the DIGRAC: Digraph Clustering Based on Flow Imbalance paper.
- Parameters
- forward(edge_index: torch.FloatTensor, edge_weight: torch.FloatTensor, features: torch.FloatTensor) → Tuple[torch.FloatTensor, torch.FloatTensor, torch.LongTensor, torch.FloatTensor][source]¶
Making a forward pass of the DIGRAC node clustering model.
- Arg types:
edge_index (PyTorch FloatTensor) - Edge indices.
edge_weight (PyTorch FloatTensor) - Edge weights.
features (PyTorch FloatTensor) - Input node features, with shape (num_nodes, num_features).
- Return types:
z (PyTorch FloatTensor) - Embedding matrix, with shape (num_nodes, 2*hidden).
output (PyTorch FloatTensor) - Log of prob, with shape (num_nodes, num_clusters).
predictions_cluster (PyTorch LongTensor) - Predicted labels.
prob (PyTorch FloatTensor) - Probability assignment matrix of different clusters, with shape (num_nodes, num_clusters).
- class DGCN_node_classification(num_features: int, hidden: int, label_dim: int, dropout: Optional[float] = 0.5, improved: bool = False, cached: bool = False)[source]¶
An implementation of the DGCN node classification model from Directed Graph Convolutional Network paper.
- Parameters
num_features (int) – Dimention of input features.
hidden (int) – Hidden dimention.
label_dim (int) – Output dimension.
dropout (float, optional) – Dropout value. Default: None.
improved (bool, optional) – If set to
True
, the layer computes \(\mathbf{\hat{A}}\) as \(\mathbf{A} + 2\mathbf{I}\). (default:False
)cached (bool, optional) – If set to
True
, the layer will cache the computation of \(\mathbf{\hat{D}}^{-1/2} \mathbf{\hat{A}} \mathbf{\hat{D}}^{-1/2}\) on first execution, and will use the cached version for further executions. This parameter should only be set toTrue
in transductive learning scenarios. (default:False
)
- forward(x: torch.FloatTensor, edge_index: torch.LongTensor, edge_in: torch.LongTensor, edge_out: torch.LongTensor, in_w: Optional[torch.FloatTensor] = None, out_w: Optional[torch.FloatTensor] = None) → torch.FloatTensor[source]¶
Making a forward pass of the DGCN node classification model.
- Arg types:
x (PyTorch FloatTensor) - Node features.
edge_index (PyTorch LongTensor) - Edge indices.
edge_in, edge_out (PyTorch LongTensor) - Edge indices for input and output directions, respectively.
in_w, out_w (PyTorch FloatTensor, optional) - Edge weights corresponding to edge indices.
- Return types:
x (PyTorch FloatTensor) - Logarithmic class probabilities for all nodes, with shape (num_nodes, num_classes).
- class DiGCL(in_channels: int, activation: str, num_hidden: int, num_proj_hidden: int, tau: float, num_layers: int)[source]¶
An implementation of the DiGCL model from the Directed Graph Contrastive Learning paper.
- Parameters
- batched_semi_loss(z1: torch.Tensor, z2: torch.Tensor, batch_size: int)[source]¶
Semi-supervised loss function. Space complexity: O(BN) (semi_loss: O(N^2))
- Args types::
z1 (PyTorch FloatTensor) - Node features.
z2 (PyTorch FloatTensor) - Node features.
- Return types:
loss (PyTorch FloatTensor) - Loss.
- forward(x: torch.Tensor, edge_index: torch.Tensor, edge_weight: Optional[torch.Tensor] = None) → torch.Tensor[source]¶
Making a forward pass of the DiGCL model.
- Arg types:
x (PyTorch FloatTensor) - Node features.
edge_index (PyTorch LongTensor) - Edge indices.
edge_weight (PyTorch FloatTensor, optional) - Edge weights corresponding to edge indices.
- Return types:
x (PyTorch FloatTensor) - Embeddings for all nodes, with shape (num_nodes, out_channels).
- loss(z1: torch.Tensor, z2: torch.Tensor, mean: bool = True, batch_size: int = 0)[source]¶
The DiGCL contrastive loss.
- Arg types:
z1, z2 (PyTorch FloatTensor) - Node hidden representations.
mean (bool, optional) - Whether to return the mean of loss values, default True, otherwise return sum.
batch_size (int, optional) - Batch size, if 0 this means full-batch. Default 0.
- Return types:
ret (PyTorch FloatTensor) - Loss.
- projection(z: torch.Tensor) → torch.Tensor[source]¶
Nonlinear transformation of the input hidden feature.
- Args types::
z (PyTorch FloatTensor) - Node features.
- Return types:
z (PyTorch FloatTensor) - Projected node features.
- class MagNet_link_prediction(num_features: int, hidden: int = 2, q: float = 0.25, K: int = 2, label_dim: int = 2, activation: bool = True, trainable_q: bool = False, layer: int = 2, dropout: float = 0.5, normalization: str = 'sym', cached: bool = False)[source]¶
The MagNet model for link prediction from the MagNet: A Neural Network for Directed Graphs. paper.
- Parameters
num_features (int) – Size of each input sample.
hidden (int, optional) – Number of hidden channels. Default: 2.
K (int, optional) – Order of the Chebyshev polynomial plus 1, i.e., Chebyshev filter size \(K\). Default: 2.
q (float, optional) – Initial value of the phase parameter, 0 <= q <= 0.25. Default: 0.25.
label_dim (int, optional) – Number of output classes. Default: 2.
activation (bool, optional) – whether to use activation function or not. (default:
True
)trainable_q (bool, optional) – whether to set q to be trainable or not. (default:
False
)layer (int, optional) – Number of MagNetConv layers. Deafult: 2.
dropout (float, optional) – Dropout value. (default:
0.5
)normalization (str, optional) – The normalization scheme for the magnetic Laplacian (default:
sym
): 1.None
: No normalization \(\mathbf{L} = \mathbf{D} - \mathbf{A} Hadamard \exp(i \Theta^{(q)})\) 2."sym"
: Symmetric normalization \(\mathbf{L} = \mathbf{I} - \mathbf{D}^{-1/2} \mathbf{A} \mathbf{D}^{-1/2} Hadamard \exp(i \Theta^{(q)})\)cached (bool, optional) – If set to
True
, the layer will cache the __norm__ matrix on first execution, and will use the cached version for further executions. This parameter should only be set toTrue
in transductive learning scenarios. (default:False
)
- forward(real: torch.FloatTensor, imag: torch.FloatTensor, edge_index: torch.LongTensor, query_edges: torch.LongTensor, edge_weight: Optional[torch.LongTensor] = None) → torch.FloatTensor[source]¶
Making a forward pass of the MagNet node classification model.
- Arg types:
real, imag (PyTorch Float Tensor) - Node features.
edge_index (PyTorch Long Tensor) - Edge indices.
query_edges (PyTorch Long Tensor) - Edge indices for querying labels.
edge_weight (PyTorch Float Tensor, optional) - Edge weights corresponding to edge indices.
- Return types:
log_prob (PyTorch Float Tensor) - Logarithmic class probabilities for all nodes, with shape (num_nodes, num_classes).
- class DiGCN_link_prediction(num_features: int, hidden: int, label_dim: int, dropout: float = 0.5)[source]¶
An implementation of the DiGCN model without inception blocks for link prediction from the Digraph Inception Convolutional Networks paper.
- Parameters
- forward(x: torch.FloatTensor, edge_index: torch.LongTensor, query_edges: torch.LongTensor, edge_weight: Optional[torch.FloatTensor] = None) → torch.FloatTensor[source]¶
Making a forward pass of the DiGCN node classification model without inception blocks.
- Arg types:
x (PyTorch FloatTensor) - Node features.
edge_index (PyTorch LongTensor) - Edge indices.
edge_weight (PyTorch FloatTensor, optional) - Edge weights corresponding to edge indices.
- Return types:
query_edges (PyTorch Long Tensor) - Edge indices for querying labels.
x (PyTorch FloatTensor) - Logarithmic class probabilities for all nodes, with shape (num_nodes, num_classes).
- class DiGCN_Inception_Block_link_prediction(num_features: int, hidden: int, label_dim: int, dropout: float = 0.5)[source]¶
An implementation of the DiGCN model with inception blocks for link prediction from the Digraph Inception Convolutional Networks paper.
- Parameters
- forward(features: torch.FloatTensor, edge_index_tuple: Tuple[torch.LongTensor, torch.LongTensor], query_edges: torch.LongTensor, edge_weight_tuple: Tuple[torch.FloatTensor, torch.FloatTensor]) → torch.FloatTensor[source]¶
Making a forward pass of the DiGCN node classification model.
- Arg types:
x (PyTorch FloatTensor) - Node features.
edge_index_tuple (PyTorch LongTensor) - Tuple of edge indices.
query_edges (PyTorch Long Tensor) - Edge indices for querying labels.
edge_weight_tuple (PyTorch FloatTensor, optional) - Tuple of edge weights corresponding to edge indices.
- Return types:
x (PyTorch FloatTensor) - Logarithmic class probabilities for all nodes, with shape (num_nodes, num_classes).
- class DGCN_link_prediction(num_features: int, hidden: int, label_dim: int, dropout: Optional[float] = None, improved: bool = False, cached: bool = False)[source]¶
An implementation of the DGCN link prediction model from Directed Graph Convolutional Network paper.
- Parameters
input_dim (int) – Dimention of input features.
filter_num (int) – Hidden dimention.
label_dim (int) – Output dimension.
dropout (float, optional) – Dropout value. Default: None.
improved (bool, optional) – If set to
True
, the layer computes \(\mathbf{\hat{A}}\) as \(\mathbf{A} + 2\mathbf{I}\). (default:False
)cached (bool, optional) – If set to
True
, the layer will cache the computation of \(\mathbf{\hat{D}}^{-1/2} \mathbf{\hat{A}} \mathbf{\hat{D}}^{-1/2}\) on first execution, and will use the cached version for further executions. This parameter should only be set toTrue
in transductive learning scenarios. (default:False
)
- forward(x: torch.FloatTensor, edge_index: torch.LongTensor, edge_in: torch.LongTensor, edge_out: torch.LongTensor, query_edges: torch.LongTensor, in_w: Optional[torch.FloatTensor] = None, out_w: Optional[torch.FloatTensor] = None) → torch.FloatTensor[source]¶
Making a forward pass of the DGCN node classification model.
- Arg types:
x (PyTorch FloatTensor) - Node features.
edge_index (PyTorch LongTensor) - Edge indices.
edge_in, edge_out (PyTorch LongTensor) - Edge indices for input and output directions, respectively.
in_w, out_w (PyTorch FloatTensor, optional) - Edge weights corresponding to edge indices.
- Return types:
x (PyTorch FloatTensor) - Logarithmic class probabilities for all nodes, with shape (num_nodes, num_classes).
- class MagNetConv(in_channels: int, out_channels: int, K: int, q: float, trainable_q: bool, normalization: str = 'sym', cached: bool = False, bias: bool = True, **kwargs)[source]¶
The magnetic graph convolutional operator from the MagNet: A Neural Network for Directed Graphs. paper \(\mathbf{\hat{L}}\) denotes the scaled and normalized magnetic Laplacian \(\frac{2\mathbf{L}}{\lambda_{\max}} - \mathbf{I}\).
- Parameters
in_channels (int) – Size of each input sample.
out_channels (int) – Size of each output sample.
K (int) – Order of the Chebyshev polynomial plus 1, i.e., Chebyshev filter size \(K\).
q (float, optional) – Initial value of the phase parameter, 0 <= q <= 0.25. Default: 0.25.
trainable_q (bool, optional) – whether to set q to be trainable or not. (default:
False
)normalization (str, optional) – The normalization scheme for the magnetic Laplacian (default:
sym
): 1.None
: No normalization \(\mathbf{L} = \mathbf{D} - \mathbf{A} \odot \exp(i \Theta^{(q)})\) 2."sym"
: Symmetric normalization \(\mathbf{L} = \mathbf{I} - \mathbf{D}^{-1/2} \mathbf{A} \mathbf{D}^{-1/2} \odot \exp(i \Theta^{(q)})\) odot denotes the element-wise multiplication.cached (bool, optional) – If set to
True
, the layer will cache the __norm__ matrix on first execution, and will use the cached version for further executions. This parameter should only be set toTrue
in transductive learning scenarios. (default:False
)bias (bool, optional) – If set to
False
, the layer will not learn an additive bias. (default:True
)**kwargs (optional) – Additional arguments of
torch_geometric.nn.conv.MessagePassing
.
- forward(x_real: torch.FloatTensor, x_imag: torch.FloatTensor, edge_index: torch.LongTensor, edge_weight: Optional[torch.Tensor] = None, lambda_max: Optional[torch.Tensor] = None) → torch.FloatTensor[source]¶
Making a forward pass of the MagNet Convolution layer.
- Arg types:
x_real, x_imag (PyTorch Float Tensor) - Node features.
edge_index (PyTorch Long Tensor) - Edge indices.
edge_weight (PyTorch Float Tensor, optional) - Edge weights corresponding to edge indices.
lambda_max (optional, but mandatory if normalization is None) - Largest eigenvalue of Laplacian.
- Return types:
out_real, out_imag (PyTorch Float Tensor) - Hidden state tensor for all nodes, with shape (N_nodes, F_out).
- message(x_j, norm)[source]¶
Constructs messages from node \(j\) to node \(i\) in analogy to \(\phi_{\mathbf{\Theta}}\) for each edge in
edge_index
. This function can take any argument as input which was initially passed topropagate()
. Furthermore, tensors passed topropagate()
can be mapped to the respective nodes \(i\) and \(j\) by appending_i
or_j
to the variable name, .e.g.x_i
andx_j
.
- class DiGCNConv(in_channels: int, out_channels: int, improved: bool = False, cached: bool = True, bias: bool = True, **kwargs)[source]¶
The graph convolutional operator from the Digraph Inception Convolutional Networks paper. The spectral operation is the same with Kipf’s GCN. DiGCN preprocesses the adjacency matrix and does not require a norm operation during the convolution operation.
- Parameters
in_channels (int) – Size of each input sample.
out_channels (int) – Size of each output sample.
cached (bool, optional) – If set to
True
, the layer will cache the adj matrix on first execution, and will use the cached version for further executions. Please note that, all the normalized adj matrices (including undirected) are calculated in the dataset preprocessing to reduce time comsume. This parameter should only be set toTrue
in transductive learning scenarios. (default:False
)bias (bool, optional) – If set to
False
, the layer will not learn an additive bias. (default:True
)**kwargs (optional) – Additional arguments of
torch_geometric.nn.conv.MessagePassing
.
- forward(x: torch.FloatTensor, edge_index: torch.LongTensor, edge_weight: Optional[torch.FloatTensor] = None) → torch.FloatTensor[source]¶
Making a forward pass of the DiGCN Convolution layer.
- Arg types:
x (PyTorch FloatTensor) - Node features.
edge_index (PyTorch LongTensor) - Edge indices.
edge_weight (PyTorch FloatTensor, optional) - Edge weights corresponding to edge indices.
- Return types:
x (PyTorch FloatTensor) - Hidden state tensor for all nodes.
- message(x_j, norm)[source]¶
Constructs messages from node \(j\) to node \(i\) in analogy to \(\phi_{\mathbf{\Theta}}\) for each edge in
edge_index
. This function can take any argument as input which was initially passed topropagate()
. Furthermore, tensors passed topropagate()
can be mapped to the respective nodes \(i\) and \(j\) by appending_i
or_j
to the variable name, .e.g.x_i
andx_j
.
- class DiGCN_InceptionBlock(in_dim: int, out_dim: int)[source]¶
An implementation of the inception block model from the Digraph Inception Convolutional Networks paper.
- forward(x: torch.FloatTensor, edge_index: torch.LongTensor, edge_weight: torch.FloatTensor, edge_index2: torch.LongTensor, edge_weight2: torch.FloatTensor) → Tuple[torch.FloatTensor, torch.FloatTensor, torch.FloatTensor][source]¶
Making a forward pass of the DiGCN inception block model.
- Arg types:
x (PyTorch FloatTensor) - Node features.
edge_index, edge_index2 (PyTorch LongTensor) - Edge indices.
edge_weight, edge_weight2 (PyTorch FloatTensor) - Edge weights corresponding to edge indices.
- Return types:
x0, x1, x2 (PyTorch FloatTensor) - Hidden representations.
- class DIMPA(hop: int, fill_value: float = 0.5)[source]¶
The directed mixed-path aggregation model from the DIGRAC: Digraph Clustering Based on Flow Imbalance paper.
- Parameters
- forward(x_s: torch.FloatTensor, x_t: torch.FloatTensor, edge_index: torch.FloatTensor, edge_weight: torch.FloatTensor) → torch.FloatTensor[source]¶
Making a forward pass of DIMPA.
- Arg types:
x_s (PyTorch FloatTensor) - Souce hidden representations.
x_t (PyTorch FloatTensor) - Target hidden representations.
edge_index (PyTorch FloatTensor) - Edge indices.
edge_weight (PyTorch FloatTensor) - Edge weights.
- Return types:
feat (PyTorch FloatTensor) - Embedding matrix, with shape (num_nodes, 2*input_dim).
- class DGCNConv(improved: bool = False, cached: bool = False, add_self_loops: bool = True, normalize: bool = True, **kwargs)[source]¶
An implementatino of the graph convolutional operator from the Directed Graph Convolutional Network paper. The same as Kipf’s GCN but remove trainable weights.
- Parameters
improved (bool, optional) – If set to
True
, the layer computes \(\mathbf{\hat{A}}\) as \(\mathbf{A} + 2\mathbf{I}\). (default:False
)cached (bool, optional) – If set to
True
, the layer will cache the computation of \(\mathbf{\hat{D}}^{-1/2} \mathbf{\hat{A}} \mathbf{\hat{D}}^{-1/2}\) on first execution, and will use the cached version for further executions. This parameter should only be set toTrue
in transductive learning scenarios. (default:False
)add_self_loops (bool, optional) – If set to
False
, will not add self-loops to the input graph. (default:True
)normalize (bool, optional) – Whether to add self-loops and compute symmetric normalization coefficients on the fly. (default:
True
)**kwargs (optional) – Additional arguments of
torch_geometric.nn.conv.MessagePassing
.
- forward(x: torch.Tensor, edge_index: Union[torch.Tensor, torch_sparse.tensor.SparseTensor], edge_weight: Optional[torch.Tensor] = None) → torch.Tensor[source]¶
Making a forward pass of the graph convolutional operator.
- Arg types:
x (PyTorch FloatTensor) - Node features.
edge_index (Adj) - Edge indices.
edge_weight (OptTensor, optional) - Edge weights corresponding to edge indices.
- Return types:
out (PyTorch FloatTensor) - Hidden state tensor for all nodes.
- message(x_j: torch.Tensor, edge_weight: Optional[torch.Tensor]) → torch.Tensor[source]¶
Constructs messages from node \(j\) to node \(i\) in analogy to \(\phi_{\mathbf{\Theta}}\) for each edge in
edge_index
. This function can take any argument as input which was initially passed topropagate()
. Furthermore, tensors passed topropagate()
can be mapped to the respective nodes \(i\) and \(j\) by appending_i
or_j
to the variable name, .e.g.x_i
andx_j
.
- message_and_aggregate(adj_t: torch_sparse.tensor.SparseTensor, x: torch.Tensor) → torch.Tensor[source]¶
Fuses computations of
message()
andaggregate()
into a single function. If applicable, this saves both time and memory since messages do not explicitly need to be materialized. This function will only gets called in case it is implemented and propagation takes place based on atorch_sparse.SparseTensor
.
Signed (Directed) Network Models and Layers¶
- class SSSNET_node_clustering(nfeat: int, hidden: int, nclass: int, dropout: float, hop: int, fill_value: float, directed: bool = False, bias: bool = True)[source]¶
The signed graph clustering model from the SSSNET: Semi-Supervised Signed Network Clustering paper.
- Parameters
nfeat (int) – Number of features.
hidden (int) – Hidden dimensions of the initial MLP.
nclass (int) – Number of clusters.
dropout (float) – Dropout probability.
hop (int) – Number of hops to consider.
fill_value (float) – Value for added self-loops for the positive part of the adjacency matrix.
directed (bool, optional) – Whether the input network is directed or not. (default:
False
)bias (bool, optional) – If set to
False
, the layer will not learn an additive bias. (default:True
)
- forward(edge_index_p: torch.LongTensor, edge_weight_p: torch.FloatTensor, edge_index_n: torch.LongTensor, edge_weight_n: torch.FloatTensor, features: torch.FloatTensor) → Tuple[torch.FloatTensor, torch.FloatTensor, torch.LongTensor, torch.FloatTensor][source]¶
Making a forward pass of the SSSNET.
- Arg types:
edge_index_p, edge_index_n (PyTorch FloatTensor) - Edge indices for positive and negative parts.
edge_weight_p, edge_weight_n (PyTorch FloatTensor) - Edge weights for positive and nagative parts.
features (PyTorch FloatTensor) - Input node features, with shape (num_nodes, num_features).
- Return types:
z (PyTorch FloatTensor) - Embedding matrix, with shape (num_nodes, 2*hidden) for undirected graphs and (num_nodes, 4*hidden) for directed graphs.
output (PyTorch FloatTensor) - Log of prob, with shape (num_nodes, num_clusters).
predictions_cluster (PyTorch LongTensor) - Predicted labels.
prob (PyTorch FloatTensor) - Probability assignment matrix of different clusters, with shape (num_nodes, num_clusters).
- class SSSNET_link_prediction(nfeat: int, hidden: int, nclass: int, dropout: float, hop: int, fill_value: float, directed: bool = False, bias: bool = True)[source]¶
The signed graph link prediction model adapted from the SSSNET: Semi-Supervised Signed Network Clustering paper.
- Parameters
nfeat (int) – Number of features.
hidden (int) – Hidden dimensions of the initial MLP.
nclass (int) – Number of link classes.
dropout (float) – Dropout probability.
hop (int) – Number of hops to consider.
fill_value (float) – Value for added self-loops for the positive part of the adjacency matrix.
directed (bool, optional) – Whether the input network is directed or not. (default:
False
)bias (bool, optional) – If set to
False
, the layer will not learn an additive bias. (default:True
)
- forward(edge_index_p: torch.LongTensor, edge_weight_p: torch.FloatTensor, edge_index_n: torch.LongTensor, edge_weight_n: torch.FloatTensor, features: torch.FloatTensor, query_edges: torch.LongTensor) → Tuple[torch.FloatTensor, torch.FloatTensor, torch.LongTensor, torch.FloatTensor][source]¶
Making a forward pass of the SSSNET.
- Arg types:
edge_index_p, edge_index_n (PyTorch FloatTensor) - Edge indices for positive and negative parts.
edge_weight_p, edge_weight_n (PyTorch FloatTensor) - Edge weights for positive and nagative parts.
features (PyTorch FloatTensor) - Input node features, with shape (num_nodes, num_features).
query_edges (PyTorch Long Tensor) - Edge indices for querying labels.
- Return types:
log_prob (PyTorch Float Tensor) - Logarithmic class probabilities for all nodes, with shape (num_nodes, num_classes).
- class SIMPA(hop: int, fill_value: float, directed: bool = False)[source]¶
The signed mixed-path aggregation model from the SSSNET: Semi-Supervised Signed Network Clustering paper.
- Parameters
- forward(edge_index_p: torch.LongTensor, edge_weight_p: torch.FloatTensor, edge_index_n: torch.LongTensor, edge_weight_n: torch.FloatTensor, x_p: torch.FloatTensor, x_n: torch.FloatTensor, x_pt: Optional[torch.FloatTensor] = None, x_nt: Optional[torch.FloatTensor] = None) → Tuple[torch.FloatTensor, torch.FloatTensor, torch.LongTensor, torch.FloatTensor][source]¶
Making a forward pass of SIMPA.
- Arg types:
edge_index_p, edge_index_n (PyTorch FloatTensor) - Edge indices for positive and negative parts.
edge_weight_p, edge_weight_n (PyTorch FloatTensor) - Edge weights for positive and nagative parts.
x_p (PyTorch FloatTensor) - Souce positive hidden representations.
x_n (PyTorch FloatTensor) - Souce negative hidden representations.
x_pt (PyTorch FloatTensor, optional) - Target positive hidden representations. Default: None.
x_nt (PyTorch FloatTensor, optional) - Target negative hidden representations. Default: None.
- Return types:
feat (PyTorch FloatTensor) - Embedding matrix, with shape (num_nodes, 2*input_dim) for undirected graphs and (num_nodes, 4*input_dim) for directed graphs.
- class SDGNN(node_num: int, edge_index_s, in_dim: int = 20, out_dim: int = 20, layer_num: int = 2, init_emb: Optional[torch.FloatTensor] = None, init_emb_grad: bool = True, lamb_d: float = 5.0, lamb_t: float = 1.0, **kwargs)[source]¶
The SDGNN model from “SDGNN: Learning Node Representation for Signed Directed Networks” paper.
- Parameters
node_num (int, optional) – The number of nodes.
edge_index_s (LongTensor) – The edgelist with sign. (e.g.,
torch.LongTensor([[0, 1, -1], [0, 2, 1]])
)in_dim (int, optional) – Size of each input sample features. Defaults to 20.
out_dim (int) – Size of each hidden embeddings. Defaults to 20.
layer_num (int, optional) – Number of layers. Defaults to 2.
init_emb – (FloatTensor, optional): The initial embeddings. Defaults to
None
, which will use TSVD as initial embeddings.init_emb_grad (bool optional) – Whether to set the initial embeddings to be trainable. (default:
False
)lamb_d (float, optional) – Balances the direction loss contributions of the overall objective. (default:
1.0
)lamb_t (float, optional) – Balances the triangle loss contributions of the overall objective. (default:
1.0
)
- forward() → torch.FloatTensor[source]¶
Defines the computation performed at every call.
Should be overridden by all subclasses.
Note
Although the recipe for forward pass needs to be defined within this function, one should call the
Module
instance afterwards instead of this since the former takes care of running the registered hooks while the latter silently ignores them.
- class SiGAT(node_num: int, edge_index_s, in_dim: int = 20, out_dim: int = 20, init_emb: Optional[torch.FloatTensor] = None, init_emb_grad: bool = True, **kwargs)[source]¶
The signed graph attention network model (SiGAT) from the “Signed Graph Attention Networks” paper.
- Parameters
node_num ([type]) – Number of node.
edge_index_s (list) – The edgelist with sign. (e.g., [[0, 1, -1]] )
in_dim (int, optional) – Size of each input sample features. Defaults to 20.
out_dim (int) – Size of each output embeddings. Defaults to 20.
init_emb – (FloatTensor, optional): The initial embeddings. Defaults to
None
, which will use TSVD as initial embeddings.init_emb_grad (bool optional) – Whether to set the initial embeddings to be trainable. (default:
False
)
- forward() → torch.FloatTensor[source]¶
Defines the computation performed at every call.
Should be overridden by all subclasses.
Note
Although the recipe for forward pass needs to be defined within this function, one should call the
Module
instance afterwards instead of this since the former takes care of running the registered hooks while the latter silently ignores them.
- class SGCN(node_num: int, edge_index_s: torch.LongTensor, in_dim: int = 64, out_dim: int = 64, layer_num: int = 2, init_emb: Optional[torch.FloatTensor] = None, init_emb_grad: bool = False, lamb: float = 5, norm_emb: bool = False, **kwargs)[source]¶
The signed graph convolutional network model from the “Signed Graph Convolutional Network” paper. Internally, the first part of this module uses the
torch_geometric.nn.conv.SignedConv
operator. We have made some modifications to the original modeltorch_geometric.nn.SignedGCN
for the uniformity of model inputs.- Parameters
node_num (int) – The number of nodes.
edge_index_s (LongTensor) – The edgelist with sign. (e.g., torch.LongTensor([[0, 1, -1], [0, 2, 1]]) )
in_dim (int, optional) – Size of each input sample features. Defaults to 64.
out_dim (int, optional) – Size of each output embeddings. Defaults to 64.
layer_num (int, optional) – Number of layers. Defaults to 2.
init_emb – (FloatTensor, optional): The initial embeddings. Defaults to
None
, which will use TSVD as initial embeddings.init_emb_grad (bool optional) – Whether to set the initial embeddings to be trainable. (default:
False
)lamb (float, optional) – Balances the contributions of the overall objective. (default:
5
)norm_emb (bool, optional) – Whether to normalize embeddings. (default:
False
)
- forward() → torch.Tensor[source]¶
Defines the computation performed at every call.
Should be overridden by all subclasses.
Note
Although the recipe for forward pass needs to be defined within this function, one should call the
Module
instance afterwards instead of this since the former takes care of running the registered hooks while the latter silently ignores them.
- class SNEA(node_num: int, edge_index_s: torch.LongTensor, in_dim: int = 64, out_dim: int = 64, layer_num: int = 2, init_emb: Optional[torch.FloatTensor] = None, init_emb_grad: bool = True, lamb: float = 4)[source]¶
The signed graph attentional layers operator from the “Learning Signed Network Embedding via Graph Attention” paper :param node_num: The number of nodes. :type node_num: int :param edge_index_s: The edgelist with sign. (e.g., torch.LongTensor([[0, 1, -1], [0, 2, 1]]) ) :type edge_index_s: LongTensor :param in_dim: Size of each input sample features. Defaults to 64. :type in_dim: int, optional :param out_dim: Size of each output embeddings. Defaults to 64. :type out_dim: int, optional :param layer_num: Number of layers. Defaults to 2. :type layer_num: int, optional :param init_emb: (FloatTensor, optional): The initial embeddings. Defaults to
None
, which will use TSVD as initial embeddings. :param init_emb_grad: Optimize initial embeddings or not. :type init_emb_grad: bool, optional :param lamb: Balances the contributions of the overallobjective. (default:
4
)- forward() → torch.Tensor[source]¶
Defines the computation performed at every call.
Should be overridden by all subclasses.
Note
Although the recipe for forward pass needs to be defined within this function, one should call the
Module
instance afterwards instead of this since the former takes care of running the registered hooks while the latter silently ignores them.
- class SNEAConv(in_dim: int, out_dim: int, first_aggr: bool, bias: bool = True, norm_emb: bool = True, add_self_loops=True, **kwargs)[source]¶
The signed graph attentional layers operator from the “Learning Signed Network Embedding via Graph Attention” paper
\[ \begin{align}\begin{aligned}\mathbf{h}_{i}^{\mathcal{B}(l)}=\tanh \left(\sum_{j \in \hat{\mathcal{N}}_{i}^{+}, k \in \mathcal{N}_{i}^{-}} \alpha_{i j}^{\mathcal{B}(l)} \mathbf{h}_{j}^{\mathcal{B}(l-1)} \mathbf{W}^{\mathcal{B}(l)} +\alpha_{i k}^{\mathcal{B}(l)} \mathbf{h}_{k}^{\mathcal{U}(l-1)} \mathbf{W}^{\mathcal{B}(l)}\right)\\\mathbf{h}_{i}^{\mathcal{U}(l)}=\tanh \left(\sum_{j \in \hat{\mathcal{N}}_{i}^{+}, k \in \mathcal{N}_{i}^{-}} \alpha_{i j}^{\mathcal{U}(l)} \mathbf{h}_{j}^{\mathcal{U}(l-1)} \mathbf{W}^{\mathcal{U}(l)} +\alpha_{i k}^{\mathcal{U}(l)} \mathbf{h}_{k}^{\mathcal{B}(l-1)} \mathbf{W}^{\mathcal{U}(l)}\right)\end{aligned}\end{align} \]In case
first_aggr
isFalse
, the layer expectsx
to be a tensor wherex[:, :in_dim]
denotes the positive node features \(\mathbf{X}^{(\textrm{pos})}\) andx[:, in_dim:]
denotes the negative node features \(\mathbf{X}^{(\textrm{neg})}\).- Parameters
in_dim (int or tuple) – Size of each input sample, or
-1
to derive the size from the first input(s) to the forward method. A tuple corresponds to the sizes of source and target dimensionalities.out_dim (int) – Size of each output sample.
first_aggr (bool) – Denotes which aggregation formula to use.
bias (bool, optional) – If set to
False
, the layer will not learn an additive bias. (default:True
)**kwargs (optional) – Additional arguments of
torch_geometric.nn.conv.MessagePassing
.
- message(x1_j: torch.Tensor, x2_j: torch.Tensor, x1_i: torch.Tensor, x2_i: torch.Tensor, edge_p: torch.Tensor, alpha_func, index: torch.Tensor, ptr: Optional[torch.Tensor], size_i: Optional[int]) → torch.Tensor[source]¶
Constructs messages from node \(j\) to node \(i\) in analogy to \(\phi_{\mathbf{\Theta}}\) for each edge in
edge_index
. This function can take any argument as input which was initially passed topropagate()
. Furthermore, tensors passed topropagate()
can be mapped to the respective nodes \(i\) and \(j\) by appending_i
or_j
to the variable name, .e.g.x_i
andx_j
.
- class SGCNConv(in_dim: int, out_dim: int, first_aggr: bool, bias: bool = True, norm_emb: bool = False, **kwargs)[source]¶
The signed graph convolutional operator from the “Signed Graph Convolutional Network” paper
\[ \begin{align}\begin{aligned}\mathbf{x}_v^{(\textrm{pos})} &= \mathbf{\Theta}^{(\textrm{pos})} \left[ \frac{1}{|\mathcal{N}^{+}(v)|} \sum_{w \in \mathcal{N}^{+}(v)} \mathbf{x}_w , \mathbf{x}_v \right]\\\mathbf{x}_v^{(\textrm{neg})} &= \mathbf{\Theta}^{(\textrm{neg})} \left[ \frac{1}{|\mathcal{N}^{-}(v)|} \sum_{w \in \mathcal{N}^{-}(v)} \mathbf{x}_w , \mathbf{x}_v \right]\end{aligned}\end{align} \]if
first_aggr
is set toTrue
, and\[ \begin{align}\begin{aligned}\mathbf{x}_v^{(\textrm{pos})} &= \mathbf{\Theta}^{(\textrm{pos})} \left[ \frac{1}{|\mathcal{N}^{+}(v)|} \sum_{w \in \mathcal{N}^{+}(v)} \mathbf{x}_w^{(\textrm{pos})}, \frac{1}{|\mathcal{N}^{-}(v)|} \sum_{w \in \mathcal{N}^{-}(v)} \mathbf{x}_w^{(\textrm{neg})}, \mathbf{x}_v^{(\textrm{pos})} \right]\\\mathbf{x}_v^{(\textrm{neg})} &= \mathbf{\Theta}^{(\textrm{pos})} \left[ \frac{1}{|\mathcal{N}^{+}(v)|} \sum_{w \in \mathcal{N}^{+}(v)} \mathbf{x}_w^{(\textrm{neg})}, \frac{1}{|\mathcal{N}^{-}(v)|} \sum_{w \in \mathcal{N}^{-}(v)} \mathbf{x}_w^{(\textrm{pos})}, \mathbf{x}_v^{(\textrm{neg})} \right]\end{aligned}\end{align} \]otherwise. In case
first_aggr
isFalse
, the layer expectsx
to be a tensor wherex[:, :in_dim]
denotes the positive node features \(\mathbf{X}^{(\textrm{pos})}\) andx[:, in_dim:]
denotes the negative node features \(\mathbf{X}^{(\textrm{neg})}\).- Parameters
in_dim (int or tuple) – Size of each input sample, or
-1
to derive the size from the first input(s) to the forward method. A tuple corresponds to the sizes of source and target dimensionalities.out_dim (int) – Size of each output sample.
first_aggr (bool) – Denotes which aggregation formula to use.
norm_emb (bool) – Whether to normalize embeddings. (default:
False
)bias (bool, optional) – If set to
False
, the layer will not learn an additive bias. (default:True
)norm_emb – Denotes embedding is normalized or not. (default:
False
)**kwargs (optional) – Additional arguments of
torch_geometric.nn.conv.MessagePassing
.
- forward(x: Union[torch.Tensor, Tuple[torch.Tensor, torch.Tensor]], pos_edge_index: Union[torch.Tensor, torch_sparse.tensor.SparseTensor], neg_edge_index: Union[torch.Tensor, torch_sparse.tensor.SparseTensor]) → torch.Tensor[source]¶
Defines the computation performed at every call.
Should be overridden by all subclasses.
Note
Although the recipe for forward pass needs to be defined within this function, one should call the
Module
instance afterwards instead of this since the former takes care of running the registered hooks while the latter silently ignores them.
- message(x_j: torch.Tensor) → torch.Tensor[source]¶
Constructs messages from node \(j\) to node \(i\) in analogy to \(\phi_{\mathbf{\Theta}}\) for each edge in
edge_index
. This function can take any argument as input which was initially passed topropagate()
. Furthermore, tensors passed topropagate()
can be mapped to the respective nodes \(i\) and \(j\) by appending_i
or_j
to the variable name, .e.g.x_i
andx_j
.
- message_and_aggregate(adj_t: torch_sparse.tensor.SparseTensor, x: Tuple[torch.Tensor, torch.Tensor]) → torch.Tensor[source]¶
Fuses computations of
message()
andaggregate()
into a single function. If applicable, this saves both time and memory since messages do not explicitly need to be materialized. This function will only gets called in case it is implemented and propagation takes place based on atorch_sparse.SparseTensor
.
- class MSGNN_link_prediction(num_features: int, hidden: int = 2, q: float = 0.25, K: int = 2, label_dim: int = 2, activation: bool = True, trainable_q: bool = False, layer: int = 2, dropout: float = 0.5, normalization: str = 'sym', cached: bool = False, conv_bias: bool = True, absolute_degree: bool = True)[source]¶
The MSGNN model for link prediction from the MSGNN: A Spectral Graph Neural Network Based on a Novel Magnetic Signed Laplacian paper.
- Parameters
num_features (int) – Size of each input sample.
hidden (int, optional) – Number of hidden channels. Default: 2.
K (int, optional) – Order of the Chebyshev polynomial plus 1, i.e., Chebyshev filter size \(K\). Default: 2.
q (float, optional) – Initial value of the phase parameter, 0 <= q <= 0.25. Default: 0.25.
label_dim (int, optional) – Number of output classes. Default: 2.
activation (bool, optional) – whether to use activation function or not. (default:
True
)trainable_q (bool, optional) – whether to set q to be trainable or not. (default:
False
)layer (int, optional) – Number of MSConv layers. Deafult: 2.
dropout (float, optional) – Dropout value. (default:
0.5
)normalization (str, optional) – The normalization scheme for the signed directed Laplacian (default:
sym
): 1.None
: No normalization \(\mathbf{L} = \bar{\mathbf{D}} - \mathbf{A} Hadamard \exp(i \Theta^{(q)})\) 2."sym"
: Symmetric normalization \(\mathbf{L} = \mathbf{I} - \bar{\mathbf{D}}^{-1/2} \mathbf{A} \bar{\mathbf{D}}^{-1/2} Hadamard \exp(i \Theta^{(q)})\)cached (bool, optional) – If set to
True
, the layer will cache the __norm__ matrix on first execution, and will use the cached version for further executions. This parameter should only be set toTrue
in transductive learning scenarios. (default:False
)conv_bias (bool, optional) – Whether to use bias in the convolutional layers, default
True
.absolute_degree (bool, optional) – Whether to calculate the degree matrix with respect to absolute entries of the adjacency matrix. (default:
True
)
- forward(real: torch.FloatTensor, imag: torch.FloatTensor, edge_index: torch.LongTensor, query_edges: torch.LongTensor, edge_weight: Optional[torch.LongTensor] = None) → torch.FloatTensor[source]¶
Making a forward pass of the MagNet node classification model.
- Arg types:
real, imag (PyTorch Float Tensor) - Node features.
edge_index (PyTorch Long Tensor) - Edge indices.
query_edges (PyTorch Long Tensor) - Edge indices for querying labels.
edge_weight (PyTorch Float Tensor, optional) - Edge weights corresponding to edge indices.
- Return types:
log_prob (PyTorch Float Tensor) - Logarithmic class probabilities for all nodes, with shape (num_nodes, num_classes).
- class MSGNN_node_classification(num_features: int, hidden: int = 2, q: float = 0.25, K: int = 2, label_dim: int = 2, activation: bool = False, trainable_q: bool = False, layer: int = 2, dropout: float = False, normalization: str = 'sym', cached: bool = False, conv_bias: bool = True, absolute_degree: bool = True)[source]¶
The MSGNN model for node classification from the MSGNN: A Spectral Graph Neural Network Based on a Novel Magnetic Signed Laplacian paper.
- Parameters
num_features (int) – Size of each input sample.
hidden (int, optional) – Number of hidden channels. Default: 2.
K (int, optional) – Order of the Chebyshev polynomial. Default: 2.
q (float, optional) – Initial value of the phase parameter, 0 <= q <= 0.25. Default: 0.25.
label_dim (int, optional) – Number of output classes. Default: 2.
activation (bool, optional) – whether to use activation function or not. (default:
False
)trainable_q (bool, optional) – whether to set q to be trainable or not. (default:
False
)layer (int, optional) – Number of MSConv layers. Deafult: 2.
normalization (str, optional) – The normalization scheme for the signed directed Laplacian (default:
sym
): 1.None
: No normalization \(\mathbf{L} = \bar{\mathbf{D}} - \mathbf{A} \odot \exp(i \Theta^{(q)})\) 2."sym"
: Symmetric normalization \(\mathbf{L} = \mathbf{I} - \bar{\mathbf{D}}^{-1/2} \mathbf{A} \bar{\mathbf{D}}^{-1/2} \odot \exp(i \Theta^{(q)})\) odot denotes the element-wise multiplication.cached (bool, optional) – If set to
True
, the layer will cache the __norm__ matrix on first execution, and will use the cached version for further executions. This parameter should only be set toTrue
in transductive learning scenarios. (default:False
)conv_bias (bool, optional) – Whether to use bias in the convolutional layers, default
True
.absolute_degree (bool, optional) – Whether to calculate the degree matrix with respect to absolute entries of the adjacency matrix. (default:
True
)
- forward(real: torch.FloatTensor, imag: torch.FloatTensor, edge_index: torch.LongTensor, edge_weight: Optional[torch.LongTensor] = None) → torch.FloatTensor[source]¶
Making a forward pass of the MagNet node classification model.
- Arg types:
real, imag (PyTorch Float Tensor) - Node features.
edge_index (PyTorch Long Tensor) - Edge indices.
edge_weight (PyTorch Float Tensor, optional) - Edge weights corresponding to edge indices.
- Return types:
z (PyTorch FloatTensor) - Embedding matrix, with shape (num_nodes, 2*hidden) for undirected graphs and (num_nodes, 4*hidden) for directed graphs.
output (PyTorch FloatTensor) - Log of prob, with shape (num_nodes, num_clusters).
predictions_cluster (PyTorch LongTensor) - Predicted labels.
prob (PyTorch FloatTensor) - Probability assignment matrix of different clusters, with shape (num_nodes, num_clusters).
- class MSConv(in_channels: int, out_channels: int, K: int, q: float, trainable_q: bool, normalization: str = 'sym', bias: bool = True, cached: bool = False, absolute_degree: bool = True, **kwargs)[source]¶
Magnetic Signed Laplacian Convolution Layer from the MSGNN: A Spectral Graph Neural Network Based on a Novel Magnetic Signed Laplacian paper.
- Parameters
in_channels (int) – Size of each input sample.
out_channels (int) – Size of each output sample.
K (int) – Order of the Chebyshev polynomial plus 1, i.e., Chebyshev filter size \(K\).
q (float, optional) – Initial value of the phase parameter, 0 <= q <= 0.25. Default: 0.25.
trainable_q (bool, optional) – whether to set q to be trainable or not. (default:
False
)normalization (str, optional) – The normalization scheme for the magnetic Laplacian (default:
sym
): 1.None
: No normalization \(\mathbf{L} = \bar{\mathbf{D}} - \mathbf{A} \odot \exp(i \Theta^{(q)})\) 2."sym"
: Symmetric normalization \(\mathbf{L} = \mathbf{I} - \bar{\mathbf{D}}^{-1/2} \mathbf{A} \bar{\mathbf{D}}^{-1/2} \odot \exp(i \Theta^{(q)})\) odot denotes the element-wise multiplication.cached (bool, optional) – If set to
True
, the layer will cache the __norm__ matrix on first execution, and will use the cached version for further executions. This parameter should only be set toTrue
in transductive learning scenarios. (default:False
)bias (bool, optional) – If set to
False
, the layer will not learn an additive bias. (default:True
)absolute_degree (bool, optional) – Whether to calculate the degree matrix with respect to absolute entries of the adjacency matrix. (default:
True
)**kwargs (optional) – Additional arguments of
torch_geometric.nn.conv.MessagePassing
.
- forward(x_real: torch.FloatTensor, x_imag: torch.FloatTensor, edge_index: torch.LongTensor, edge_weight: Optional[torch.Tensor] = None, lambda_max: Optional[torch.Tensor] = None) → torch.FloatTensor[source]¶
Making a forward pass of the Signed Directed Magnetic Laplacian Convolution layer.
- Arg types:
x_real, x_imag (PyTorch Float Tensor) - Node features.
edge_index (PyTorch Long Tensor) - Edge indices.
edge_weight (PyTorch Float Tensor, optional) - Edge weights corresponding to edge indices.
lambda_max (optional, but mandatory if normalization is None) - Largest eigenvalue of Laplacian.
- Return types:
out_real, out_imag (PyTorch Float Tensor) - Hidden state tensor for all nodes, with shape (N_nodes, F_out).
- message(x_j, norm)[source]¶
Constructs messages from node \(j\) to node \(i\) in analogy to \(\phi_{\mathbf{\Theta}}\) for each edge in
edge_index
. This function can take any argument as input which was initially passed topropagate()
. Furthermore, tensors passed topropagate()
can be mapped to the respective nodes \(i\) and \(j\) by appending_i
or_j
to the variable name, .e.g.x_i
andx_j
.
Auxiliary Methods and Layers¶
- class complex_relu_layer[source]¶
The complex ReLU layer from the MagNet: A Neural Network for Directed Graphs. paper.